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Abstract: Iris-based biometric systems have gained importance for secure access control. However, the need for 

improved accuracy and efficiency remains a challenge. This research addresses these challenges by 

leveraging the Cultural Chicken Swarm Optimization technique (CCSO), which integrates a belief space 

for enhanced feature selection, optimizing both accuracy and computational efficiency. A total of 240 

students from Ladoke Akintola University of Technology participated in the data collection process, with 

left and right iris images captured using a CMITech iris camera. The data underwent preprocessing, 

followed by feature extraction using the Haar Wavelet-Based Technique. CCSO was applied for feature 

selection, optimizing the discriminative power of the features. The optimized features from both irises 

were fused, and matching scores were computed using Mahalanobis distance to classify users as genuine 

or impostors. The experimental results demonstrate that the CCSO technique outperforms the standard 

Chicken Swarm Optimization (CSO) in both accuracy and computational efficiency. For the left iris, 

CCSO achieved a 23.33% FAR, 9.44% FRR, and 87.08% accuracy, while for the right iris, it achieved a 

21.67% FAR, 8.89% FRR, and 87.92% accuracy, significantly improving upon CSO. For the multi-

instance dataset, CCSO further improved accuracy to 96.25%, reducing the FAR and FRR to 5.00% and 

3.33%, respectively, while cutting computation time by nearly 35.00%. CCSO also reduced the Equal 

Error Rate (EER) to 4.17%, as opposed to CSO’s 7.50%. These results highlight the potential of CCSO in 

real-time biometric systems, and future research will explore its application to other biometric modalities 

and larger datasets. 

Keywords:  Access control, Biometric system, Chicken Swarm Optimization, Cultural Algorithm, Cultural Chicken 

Swarm Optimization, Multi-instance iris authentication  

 

Introduction 

Iris biometrics, one of the most accurate and secure 

biometric modalities, has become a cornerstone of modern 

authentication systems due to its high uniqueness and 

stability over time. The human iris contains rich texture 

patterns that remain unchanged throughout a person’s 

lifetime, making it ideal for secure identification 

(Daugman, 2004). Compared to other biometric traits like 

fingerprints or facial recognition, the iris is less affected 

by aging or environmental factors, making it more reliable 

for long-term use (Bowyer et al., 2008). This makes iris-

based systems particularly valuable in security-sensitive 

applications such as border control, military installations, 

and access control systems (Olayiwola et al., 2024). 

However, as these systems evolve, the need for enhanced 

performance, particularly in terms of accuracy, 

robustness, and computational efficiency, continues to 

grow. 

Optimization techniques are critical for improving the 

performance of biometric systems, particularly in feature 

extraction, matching, and decision-making processes (Ola 

et al., 2020; Adedeji et al., 2021; Oguntoye et al., 2023). 

The Chicken Swarm Optimization (CSO) algorithm, 

which mimics the hierarchical behaviour of chickens, has 

been explored for its efficiency in solving complex 

optimization problems, including biometric recognition 

tasks (Meng et al., 2014). Despite its promising results, 

CSO suffers from limitations such as premature 

convergence and trapping in local optima, which can 

degrade its performance, particularly in high-dimensional 

spaces (Shi et al., 2016). To address these challenges, the 

Cultural Chicken Swarm Optimization (CCSO) technique 

has emerged as an extension of CSO. CCSO integrates 

cultural evolution concepts to enhance global search 

capabilities and avoid the common pitfalls of premature 

convergence, making it a more robust and effective 

optimization method for biometric applications (Zhang et 

al., 2017). 

Current biometric systems, particularly those relying on 

single-instance models, face limitations in handling noisy 

data, susceptibility to spoofing, and reduced accuracy in 

challenging environments (Adedeji et al., 2021b; Kadhim 

and Abdulameer, 2024). Single-instance models depend 

on data from a single source (e.g., one iris), making them 

vulnerable to inconsistencies or partial obstructions. To 

overcome these issues, multi-instance iris recognition has 

been proposed, where both left and right iris images are 

used to enhance the robustness of the authentication 

system. 

The primary objective of this study is to investigate the 

effectiveness of the Cultural Chicken Swarm 

Optimization (CCSO) technique in comparison to the 

standard CSO algorithm for multi-instance iris biometric 

authentication.  

CSO Algorithm and Its Applications 

The Chicken Swarm Optimization (CSO) algorithm, 

developed by Meng et al. (2014), is inspired by the natural 

behaviours of chickens, particularly their social hierarchy 

and interaction dynamics. In CSO, chickens are 

categorized into groups, such as roosters, hens, and chicks, 

with each group exhibiting different behaviours that guide 

the search for optimal solutions. Roosters represent the 

most competitive individuals, while hens and chicks 

follow their strategies but also perform independent 
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explorations. This social dynamic allows the algorithm to 

balance between exploration and exploitation in complex 

search spaces. 

In iris biometric systems, the CSO algorithm can enhance 

the accuracy of recognition by optimizing the selection of 

discriminative iris features. However, despite its 

effectiveness, CSO suffers from premature convergence, 

where the algorithm stagnates in local optima, especially 

when dealing with high-dimensional and multimodal 

problems. This limitation necessitates further refinements 

to enhance its performance in complex tasks like multi-

instance iris recognition (Zhang et al., 2017). 

Cultural Algorithms (CAs) 

Cultural Algorithms (CAs), introduced by Reynolds 

(1994), add a layer of sophistication to traditional 

optimization techniques by incorporating the concept of 

cultural evolution. Unlike other algorithms that rely solely 

on population dynamics, CAs maintain a knowledge base 

that influences the search process over time. This 

knowledge base, known as the "belief space," stores 

successful strategies and solutions from previous 

iterations, which are then used to guide future searches.  

The integration of CAs with CSO, resulting in the Cultural 

Chicken Swarm Optimization (CCSO) technique, 

introduces a mechanism to mitigate the premature 

convergence problem in CSO. The CCSO algorithm 

utilises a belief space to enhance global exploration 

capabilities, mitigating the risk of premature convergence 

to local optima and thereby improving overall 

optimization performance. This makes it particularly 

suitable for complex biometric tasks, such as multi-

instance iris recognition, where the search space is vast, 

and optimal solutions are difficult to find using traditional 

methods. In the context of this study, the CCSO technique 

will be employed to optimize the multi-instance iris 

biometric system. This study aims to demonstrate that 

CCSO outperforms the traditional CSO in multi-instance 

biometric applications, thus contributing to the 

enhancement of biometric authentication systems. 

Various studies have shown that using multiple instances 

within a biometric modality, such as the left and right 

irises, can significantly enhance performance when 

compared to single-instance systems. 

Wang, Yao, and Han (2008) introduced a method to 

enhance iris recognition performance by fusing multiple 

instances at the score level. They proposed combining left 

and right iris images using the Minimax Probability 

Machine (MPM) to generate a more reliable decision 

score, leading to better verification accuracy. Their 

experiments on the CASIA and UBIRIS databases 

demonstrated that this multi-instance fusion approach 

significantly outperformed single-instance methods, 

highlighting the effectiveness of MPM in improving 

system robustness. Building on this, Bharadi et al. (2018) 

presented the Webber Local Descriptor (WLD) as a new 

method for feature extraction in multi-instance iris 

recognition. Their approach focused on capturing texture 

information from both irises, showing that a multi-

instance system improved performance by 6.44%, with an 

88.39% Equal Error Rate (EER). This study reinforced the 

benefits of multi-instance approaches, particularly when 

using advanced feature extraction methods like WLD, 

which significantly outperformed single-instance systems. 

Tibo, Jaeger, and Frasconi (2020) introduced a theoretical 

framework called multi-multi-instance learning, allowing 

for nested bags of instances. While their research centered 

on text and image classification, the principles are 

applicable to multi-instance iris recognition, as the model 

can aggregate and interpret data across multiple levels. 

This framework provides a foundation for improving 

multi-instance biometric systems by enabling more 

comprehensive data interpretation. Podder and Mondal 

(2022) developed the LBPX feature extraction method, a 

rotation-invariant extension of the Local Binary Pattern 

(LBP). When applied to multi-instance iris recognition, 

LBPX achieved over 96% accuracy across several 

datasets, demonstrating superior performance in both 

accuracy and feature vector length reduction. The 

method’s ability to reduce feature length leads to faster 

recognition, critical in real-time applications, and 

highlights the importance of efficient feature extraction 

techniques in multi-instance systems. 

Piugie (2023) explored a time-series-based approach to 

biometric data processing, transforming raw data into 2D 

images for deep learning applications. This method has the 

potential to enhance feature extraction and performance in 

multi-instance iris recognition, while addressing security 

concerns like adversarial attacks, which are crucial in 

biometric systems. Kadhim and Abdulameer (2024) 

addressed the limitations of unimodal biometric systems 

by proposing a multimodal system combining face, 

palmprint, and iris features. They achieved up to 99.88% 

accuracy, surpassing unimodal systems and underscoring 

the benefits of combining multiple biometric features. 

Although their focus was on multimodal biometrics, the 

integration of multi-instance data in iris recognition can 

offer similar improvements in accuracy and robustness. 

The reviewed studies collectively emphasize the 

superiority of multi-instance iris recognition systems over 

single-instance models.  

 

Methodology  

The implementation of the Cultural Chicken Swarm 

Optimization (CCSO) technique for an iris-based multi-

instance biometric access control system involves several 

critical steps. First, left and right iris datasets are acquired, 

forming the foundation for the multi-instance approach. 

The acquired data undergoes pre-processing, which 

involves cleaning and normalizing the iris images to 

enhance the quality and consistency of the dataset. 

Following pre-processing, the Haar Wavelet-Based 

Technique is utilized for feature extraction. This method 

effectively captures significant patterns and details from 

both the left and right iris images. After feature extraction, 

the Cultural Chicken Swarm Optimization (CCSO) 

technique is applied for feature selection, optimizing the 

process by using a belief space to guide the swarm's search 

for the most discriminative features. The next step 

involves fusing the optimized features from both the left 

and right iris images. This fusion process ensures that the 

most relevant information from both irises is combined to 

enhance the overall performance of the biometric system. 

A matching score is then generated using Mahalanobis 

distance, a statistical measure that evaluates the similarity 

between the optimized fused features and stored biometric 

templates. Finally, based on the generated matching score, 

the system classifies the subject as either a genuine user or 

an impostor.  

 

Acquisition of Iris Images 

A total of 240 students from LAUTECH participated in 

the iris data collection process using a CMITech iris 

camera. For each subject, three images of both the left and 

right irises were captured, resulting in stored biometric 

data. However, due to capture inconsistencies, only 200 

subjects' irises were deemed suitable for analysis. As a 

http://www.ftstjournal.com/


Multi-instance Iris Biometric Authentication System 

 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; April, 2025: Vol. 10 No. 1 pp. 127 – 133  129 

result, a dataset of 600 iris images was utilized for training 

and evaluation. The training phase employed 360 iris 

images, while 240 images were reserved for testing the 

technique.  

Pre-processing of Iris Images 

Segmentation, normalization, and enhancement were 

applied to process the captured iris images. The 

segmentation step aimed to eliminate irrelevant 

information, specifically the pupil and external areas such 

as the sclera, eyelids, and skin. This involved estimating 

the iris boundary. Initially, the iris images were processed 

using the Canny edge detection algorithm to generate an 

edge map. This edge map was then utilized to accurately 

determine the boundaries of the pupil and iris using Hough 

transforms. Horizontal segmentation operators, along with 

image binarization, were employed to extract eyelid edge 

details. The eyelid boundaries were modelled using 

parabolic curves based on the identified edge points. In the 

normalization phase, the polar coordinates of the iris were 

transformed into Cartesian coordinates, resulting in a 

rectangular strip using Daugman's rubber sheet model. 

This homogenous model remapped each point within the 

iris region into a set of polar coordinates (r, θ), where r lies 

between [0, 1] and θ between [0, 2π]. The remapping of 

the iris from Cartesian (x, y) coordinates to normalized 

non-concentric polar coordinates is mathematically 

represented in Equations 1, 2, and 3. 

I(x(r, θ), y(r, θ)) → I(r, θ)                                                1 

X(r, θ) = (1 − r)xi(θ) + r. x0

+ cos θ . (ri + r. (r0 − ri))            2  

Y(r, θ) = (1 − r)yi(θ) + r. y0

+ sin θ. (ri + r. (r0 − ri))             3 

In this model, I(x, y) represents the iris region, where 
(x, y) are the original Cartesian coordinates, and (r, θ) are 

the normalized polar coordinates along the angular θ 

direction. The rubber sheet model accounts for variations 

in pupil dilation and size, generating a consistent, 

normalized iris representation with fixed dimensions. 

After normalization, histogram equalization is applied to 

enhance the image quality.  

 

Haar Wavelet-Based Technique for Feature Extraction 

The Haar wavelet-based approach was utilized on the pre-

processed irises dataset for feature extraction. This 

method employs wavelet transformation, a decomposition 

technique that generates multiple resolutions of the image, 

starting from a high-resolution version to lower-resolution 

approximations. The multilevel 2-D wavelet 

decomposition produces four sub-images: LH, HL, and 

HH represent detail images in the horizontal, vertical, and 

diagonal directions, respectively, while LL is the 

approximation image. 

A two-level decomposition was performed to reduce the 

dimensionality of the image matrix, which resulted in the 

image size being reduced to one-quarter of its original 

size. The approximation coefficient (LL), which retains 

most of the essential image information, was extracted 

after each level of decomposition, following the same 

process as the original image. The output from the Haar 

wavelet-based method was then transformed into a feature 

vector, which served as input for the classification 

modules across all biometric systems examined in this 

study. The MATLAB code to perform the 2-D Haar 

wavelet decomposition is as follows: 

[cA, cH, cV, cD] = dwt2(image, 'haar'); 

 This command decomposes the input image into 

approximation (cA), horizontal detail (cH), vertical detail 

(cV), and diagonal detail (cD) coefficients, implementing 

the Haar wavelet transformation.  

Normalization of Features Using Min-Max Technique 

The features extracted from both the left and right iris 

using the Haar wavelet method were found to be 

heterogeneous in scale. To address this, the Min-max 

normalization technique was employed to standardize the 

iris feature sets, denoted as 𝐹𝐼𝑟𝑖𝑠. This method preserves 

the relative distribution of the features while transforming 

them into a consistent range. By mapping the raw 

biometric features onto the interval [0, 1], the Min-max 

normalization ensures that the variability in feature values 

is appropriately scaled without altering their original 

distribution. The normalization process for the biometric 

traits is expressed mathematically in Equation 4. 

       𝐹𝐼𝑟𝑖𝑠
′ =  

𝐹𝐼𝑟𝑖𝑠 − 𝑚𝑖𝑛 (𝐹𝐼𝑟𝑖𝑠)

𝑚𝑎𝑥 (𝐹𝐼𝑟𝑖𝑠) − 𝑚𝑖𝑛 (𝐹𝐼𝑟𝑖𝑠)
                              4 

Feature Selection using Cultural Chicken Swarm 

Optimization 

The Chicken Swarm Optimization (CSO) algorithm is 

recognized for its effectiveness in tackling complex 

optimization challenges. Despite its strengths, CSO often 

encounters issues with convergence and accuracy, 

particularly in high-dimensional problems. These 

challenges stem from a loss of diversity during the 

exploration of the solution space, which can impede the 

algorithm’s performance. To address these limitations, the 

Cultural Chicken Swarm Optimization (CCSO) technique 

integrates a cultural algorithm framework, which 

incorporates a belief space, acceptance function, and 

influence function into the iterative search process. This 

integration enhances the algorithm’s ability to converge 

and improves its precision by maintaining diversity and 

refining the search mechanism. The CCSO technique, 

therefore, represents an advancement in optimization 

methodologies, providing a more robust approach to 

complex problem-solving. The implementation of the 

Cultural Chicken Swarm Optimization (CCSO) technique 

for enhancing biometric access control follows these 

steps: 

1. Initialization: Begin by initializing the chicken 

swarm parameters: 𝒙𝒊 (the positions of chickens), 

and parameters N (total chickens), 𝐼𝑟 (maximum 

iterations), G (hierarchical change frequency), 𝑹𝑵 

(number of roosters), 𝑯𝑵 (number of hens), 𝑪𝑵 

(number of chicks), and 𝑴𝑵 (number of mothers). 

2. Creation of Belief Space: Initialize the belief space 

𝑩𝒔 as an empty set. 

3. Fitness Evaluation: Evaluate the fitness values of 

the chicken swarm 𝒙𝒊, initializing personal best 

𝑝𝑏𝑒𝑠𝑡 and global best 𝑔𝑏𝑒𝑠𝑡positions. Set iteration 

counter t = 1. 

4. Hierarchical Update: When 𝑡 𝑚𝑜𝑑 𝐺 = 1 , sort the 

fitness values and establish the hierarchical order 

within the swarm. Divide the swarm into subgroups 

and model the relationships among hens and chicks. 

5. Position Update: 

5.1 Roosters: Update positions using 

Equation 5:  

 𝑥𝑖,𝑗(𝑡 + 1) =  𝑥𝑖,𝑗(𝑡) ∗ (1 + 𝑅𝑎𝑛𝑑𝑛(0, 𝜎2))               5. 

where 𝜎2 is determined by the fitness values of 

the roosters (Equation 6). 

                       𝜎2

= {

1                             𝑖𝑓 𝑓𝑖 <  𝑓𝑘

𝑒𝑥𝑝 (
𝑓𝑘 − 𝑓𝑖

|𝑓𝑖|+∈
)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑘 ≠ 𝑖

                             6. 
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Hens: Update positions according to Equation 7: 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) + 𝑠1 ∗ 𝑅𝑎𝑛𝑑1 ∗

(𝑥𝑟1,𝑗(𝑡) − 𝑥𝑖,𝑗(𝑡)) +  𝑠2 ∗ 𝑅𝑎𝑛𝑑2 ∗

(𝑥𝑟2,𝑗(𝑡) − 𝑥𝑖,𝑗(𝑡))        7.   

where 𝑆1 and 𝑆2 are computed from the fitness 

differences as follows. 

𝑆1 = 𝑒𝑥𝑝 (
𝑓𝑖 − 𝑓𝑟1

|𝑓𝑖|+∈
)     

 

𝑆2 = exp(𝑓𝑟2 − 𝑓𝑖) 

Chicks: Update positions using Equation 8: 

                     𝑥𝑖,𝑗(𝑡 + 1)

=  𝑥𝑖,𝑗(𝑡) + 𝐹𝐿

∗ (𝑥𝑚,𝑗(𝑡) − 𝑥𝑖,𝑗(𝑡))                                       8. 

       where 𝐹𝐿 is a random factor in [0,2]. 

Belief Space Adjustment: Use the acceptance function to 

adjust the belief space 𝐵𝑠 . 

               𝑁𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 = 𝑛% × 𝑁 +  
𝑛%

𝑡
 × 𝑁                   9. 

Where n% is a parameter that is set by the user, 

N is the number of chickens, and t represents the 

𝑡ℎ generation. 

 𝑁𝐵𝑠 = [𝑙𝑤, 𝑢𝑝] = {𝑥𝑖|𝑙𝑤 ≤ 𝑝 ≤ 𝑢𝑝, 𝑥 ∈ 3𝑖}                10                                        

     Update bounds 𝑙𝑤 and 𝑢𝑝 using Equations 11. 

𝑙𝑤 = {
𝑥𝑖        𝑖𝑓 𝑥𝑖 ≤  𝑙𝑤 

𝑙𝑤 ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑢𝑝 = {
𝑥𝑖,       if 𝑥𝑖 ≥  𝑢𝑝  

𝑢𝑝,         otherwise
                                           11 

Influence Function: Apply the influence function to 

adjust chicken positions and avoid local optima:  

𝑥𝑖(𝑡) = {
𝑥𝑖(𝑡)  + |Rand() × (𝑢𝑝 − 𝑙𝑤)|   if 𝑥𝑖 < 𝑙𝑤

𝑥𝑖(𝑡)  − |Rand()  × (𝑢𝑝 − 𝑙𝑤)|   if 𝑥𝑖 > 𝑢𝑝

 12 

Best Solution Update: Update the individual best fitness 

(𝑝𝑏𝑒𝑠𝑡) and the global best (gbest) based on fitness 

comparisons as shown in (Equation 13). 

𝑥𝑖(𝑡) = {
𝑥𝑖(𝑡 − 1),     𝑓(𝑥𝑖(𝑡)) >  𝑓(𝑥𝑖(𝑡 − 1)),

𝑥𝑖(𝑡),             𝑓(𝑥𝑖(𝑡)) ≤  𝑓(𝑥𝑖(𝑡 − 1)).
       13 

Iteration: If  𝐭 < 𝐈𝐫, return to Step 4. Otherwise, terminate 

and output the global best solution. 

Parameter Selection: Identify the optimal parameters 

from the global best position xi(t), and determine the 

optimized feature set Fi(t) as in (Equation 14).       

𝐹𝑖(𝑡) = 𝐺𝐵𝑒𝑠𝑡(𝑥𝑖(𝑡))                      14 

Fusion of optimal features                              

The optimum features generated by CCSO from the 

normalized right iris (FirisR
′ ) and left iris (FirisL

′ ) features 

were fused using the serial rule as shown in Equation 15   

Ffused =  { FirisR
φ′

(t), FirisL
φ′

(t)}                                                  15. 

where FirisR
φ′

(t) and FirisL
φ′

(t) are the optimal normalized 

right and left iris features respectively.  

The Matching Modules 

In the matching phase, the optimized fused feature set is 

compared against the fused stored templates by employing 

a matching algorithm to compute the optimized matching 

scores. Specifically, the Mahalanobis distance is utilized 

to generate these scores, ensuring a robust comparison by 

considering the variance within the dataset. The matcher 

evaluates the similarity between the extracted features and 

the database template, producing corresponding matching 

scores. This process is mathematically represented in 

Equation 16 

  Sg(x, y)2 =  (x − y)′S−1(x − y)                                          16. 

where Sg represents the within-group covariance matrix. 

The vector with the minimum distance is identified as the 

most similar match. 

Decision module 

The matching score of the fused optimized features was 

used to identify a user as either genuine or an impostor. 

The matching score Sfused was compared to a pre-

specified threshold (th). If Sfused > th, then the user was 

identified to be genuine otherwise, be identified as an 

impostor. The decision function defined in Equation 17 

verified the identity of users. 

                Decision(Sfused) =

 {
Accept (Genuine),        if   Sfus > th   

Reject(Impostor),        otherwise        
                             17. 

Implementation and Evaluation Measure 

The research was conducted using MATLAB version 9.4 

(R2018a) on a Hewlett-Packard G56 system, equipped 

with an Intel® Core™ i5 dual-core processor running at 

2.7 GHz, 6 GB of RAM, and a 1 TB hard drive, operating 

on a 64-bit Windows 10 Professional platform. The 

software environment facilitated the seamless 

implementation and testing of the developed algorithms. 

The performance of the evaluated biometric systems was 

assessed through key metrics, including False Acceptance 

Rate (FAR), False Rejection Rate (FRR), Equal Error Rate 

(EER), and recognition accuracy. To derive these metrics, 

a confusion matrix was employed, capturing the system's 

outcomes in terms of True Positives (TP), False Positives 

(FP), False Negatives (FN), and True Negatives (TN). 

These values were instrumental in calculating the system’s 

overall performance, ensuring a thorough analysis of its 

effectiveness and reliability, as detailed in Equation 18, 19 

and 20. 

  FAR =  
FP

FP + TN
                                            18.   

           

  FRR =  
FN

FN + TP
                                             19.    

              

  Accuracy =  
TP + TN

FP + FN + TP + TN
               20.     

 

Results and Discussion  

The analysis of the performance of the developed Cultural 

Chicken Swarm Optimization (CCSO) technique in 

comparison to the standard Chicken Swarm Optimization 

(CSO) technique for multi-instance iris recognition is 

presented. The evaluation was carried out using both left 

and right iris biometric data. The standard CSO is a 

parametric method, with its performance heavily 

dependent on parameter settings, particularly the FL 

parameter, which is crucial in determining its 

effectiveness. To ensure a fair comparison, both the CCSO 

and CSO techniques were evaluated with an FL value of 

0.4, following the recommendations of prior studies by 

Meng et al. (2014) and Deb et al. (2020), which 

demonstrated that FL ∈ [0.4, 1] yields optimal results for 

many optimization problems. Empirical evidence further 

supports this choice. Table 1, 2 and 3 depicts the 

contingency table for the performance of CSO and CCSO 

technique for right iris, left iris and multi-instance iris 

recognition.  

The results in Table 1 and Table 2 present contingency 

tables for the performance of the CCSO and CSO 

techniques based on a confusion matrix for right and left 

iris data, respectively. The dataset comprises 240 

instances for each iris (180 genuine and 60 imposters).   
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Table 1: Contingency table for performance of CSO 

and CCSO Technique for Right Iris 

 

Table 2: Contingency table for performance of CSO and 

CCSO Technique for Left Iris 

 

Table 3: Contingency table for performance of CSO and 

CCSO Technique for Multi-instance Iris 

        Techniques CSO CCSO 

  Predicted Class Predicted Class 

  Genuine Imposter  Genuine Imposter  

Actual 

Class 

Genuine 

(180) 171 (TP) 9 (FN) 174 (TP)     6 (FN) 

Imposter 
(60) 6 (FP)  54 (TN) 3 (FP)   57 (TN) 

 

For right iris data, Table 1 shows that with the CCSO 

technique, 164 genuine instances were correctly 

classified, while 16 were misclassified as imposters. 

Additionally, 47 imposter instances were accurately 

identified, with 13 misclassified as genuine. Using the 

CSO technique, 161 genuine instances were correctly 

classified, while 19 were misclassified as imposters. 

Moreover, 44 imposter instances were correctly identified, 

with 16 misclassified as genuine. Similarly, Table 2 

reports left iris performance. With CCSO, 163 genuine 

instances were accurately classified, and 17 were 

misclassified. Of the imposter instances, 46 were correctly 

identified, and 14 were misclassified. Using CSO, 160 

genuine instances were correctly classified, while 20 were 

misclassified as imposters. 43 imposter instances were 

correctly identified, while 17 were misclassified. In Table 

3, multi-instance iris performance is summarized. Using 

CCSO, 174 genuine instances were correctly classified, 

while 6 were misclassified. Among imposter instances, 57 

were accurately classified, with 3 misclassified. For CSO, 

171 genuine instances were correctly classified, while 9 

were misclassified. Furthermore, 54 imposter instances 

were correctly identified, and 6 were misclassified. These 

results suggest the CCSO technique generally outperforms 

the standard CSO technique across all datasets. 

The results in Table 4 demonstrate the performance of the 

CSO and CCSO techniques at FL value of 0.4 for the 

iris biometric datasets. For the left iris, the CSO technique 

achieved a FAR of 28.33%, FRR of 11.11%, and an 

accuracy of 84.58% with a computation time of 163.94 

seconds. In comparison, the CCSO technique yielded 

better results with a FAR of 23.33%, FRR of 9.44%, and 

accuracy of 87.08%, while also reducing computation 

time to 135.19 seconds. 

Table 4: Performance of the CSO and CCSO Technique 

at FL=0.4 

 
Dataset Technique FAR 

(%) 

FRR 

(%) 

Accuracy 

(%) 

Time 

(sec) 

Left Iris 

CSO 
28.33 11.11 84.58 163.94 

CCSO 
23.33 9.44 87.08 135.19 

Right 
Iris 

CSO 26.67 10.56 85.42 159.11 

CCSO 21.67 8.89 87.92 122.61 

Multi-
instance 

Iris 

CSO 10.00 5.00 93.75 322.63 

CCSO 5.00 3.33 96.25 207.68 

 

For the right iris, the CSO technique recorded a FAR of 

26.67%, FRR of 10.56%, and an accuracy of 85.42%, 

taking 159.11 seconds. The CCSO technique improved 

upon these results, achieving a FAR of 21.67%, FRR of 

8.89%, and accuracy of 87.92%, with a reduced time of 

122.61 seconds. For the multi-instance iris dataset, the 

CSO technique achieved a FAR of 10.00%, FRR of 

5.00%, and an accuracy of 93.75% with a time of 322.63 

seconds. The CCSO technique outperformed CSO by 

achieving a FAR of 5.00%, FRR of 3.33%, and an 

accuracy of 96.25%, with a much faster computation time 

of 207.68 seconds. These results indicate that the CCSO 

technique consistently outperforms the CSO technique in 

terms of FAR, FRR, accuracy, and computational 

efficiency across all datasets. In view of the performance 

with the iris biometrics, it was revealed that the CCSO 

technique achieved improved performance with lower 

FAR, FRR, and recognition time, along with higher 

recognition accuracy compared to the standard CSO. In 

this study, the multi-instance iris biometric outperformed 

single-instance left or right iris biometric, demonstrating 

superior accuracy. However, the multi-instance iris 

biometric had a higher recognition time due to the 

increased complexity of features in both the training and 

testing sets. This highlights the balance between accuracy 

and computational efficiency when utilizing multi-

instance biometric systems. Figure 1 illustrates the FAR 

(False Acceptance Rate) and FRR (False Rejection Rate) 

for both the CSO and CCSO techniques across varying FL 

values.  

 
Figure 1: The graph of FAR and FRR against the FL 

values 

The Equal Error Rate (EER), representing the point where 

FAR and FRR converge, is a key performance metric. In 

this analysis, the CSO technique records an EER of 7.5%, 

while the CCSO technique achieves a significantly lower 

        Techniques CSO CCSO 

    Predicted Class Predicted Class 

   Genuine Imposter  Genuine Imposter  

Actual 

Class 

Genuine 
(180) 

161 (TP) 19 (FN) 164 (TP) 16 (FN) 

Imposter 

(60) 
16 (FP)   44 (TN) 13 (FP)   47 (TN) 

        Techniques CSO CCSO 

    Predicted Class Predicted Class 

   Genuine Imposter  Genuine Imposter  

Actual 
Class 

Genuine 

(180) 
160 (TP) 20 (FN) 163 (TP) 17 (FN) 

Imposter 

(60) 
17 (FP)   43 (TN) 14 (FP)   46 (TN) 
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EER of 4.165% for multi-instance iris biometric 

authentication. These EER values suggest that the CCSO 

technique outperforms the CSO approach, indicating 

superior accuracy and overall effectiveness for multi-

instance biometric systems. 

The experimental results of this study evaluated the 

performance of CSO and CCSO techniques in terms of 

recognition time, accuracy, FAR, and FRR for multi-

instance iris biometric authentication. Both techniques 

showed optimal performance at an FL value of 0.4, 

aligning with the findings of Meng et al. (2014) and Deb 

et al. (2020), which indicated that FL ∈ [0.4, 1] yields 

optimal results. Beyond this threshold, no further 

improvement in performance was noted. However, CCSO 

consistently outperformed the standard CSO, validating 

the effectiveness of integrating cultural algorithm 

operators into the CCSO technique. This enhancement 

balanced exploration and exploitation stages, significantly 

reducing recognition time and improving accuracy. The 

study demonstrated that the CCSO technique achieved 

better recognition accuracy, lower FAR, and reduced EER 

compared to the CSO, exceeding the 80% accuracy 

benchmark established by Phillips et al. (1998). The 

reduced EER, supported by the findings of Monwar and 

Gavrilova (2009) and Hossain (2018), is a critical metric, 

as a lower EER indicates better system performance. The 

study further revealed an inverse relationship between 

FAR and FRR, where decreasing one often leads to an 

increase in the other.  

The improved recognition performance of CCSO, marked 

by enhanced accuracy and reduced computational time, 

demonstrates its robustness for multi-instance iris 

authentication systems. This supports the hypothesis by 

Qu et al. (2017) and Chebihi et al. (2021) that modifying 

the standard Chicken Swarm Optimization algorithm 

enhances optimization precision, convergence speed, and 

robustness. The results highlight the effectiveness of the 

CCSO technique in ensuring a secure and efficient 

biometric authentication system, with substantial 

improvements in key performance metrics. 

 

Conclusion and Future Work 

This study demonstrated that the Cultural Chicken Swarm 

Optimization (CCSO) technique significantly outperforms 

the standard Chicken Swarm Optimization (CSO) in 

multi-instance iris biometric authentication. The CCSO 

consistently achieved lower False Acceptance Rates 

(FAR) and False Rejection Rates (FRR), higher accuracy, 

and reduced computational time across all datasets.  

This research contributes to the field of biometric 

authentication by proposing a more robust and efficient 

method, addressing the limitations of traditional 

optimization techniques, and offering improvements in 

both recognition accuracy and system security. 

Future research can explore hybrid metaheuristics, 

combining CCSO with other optimization techniques to 

further enhance system performance. Additionally, the 

potential application of CCSO to other biometric fields, 

such as fingerprint and facial recognition, should be 

investigated to determine its broader utility.  
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